Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.366
Filtrar
1.
Plant Physiol Biochem ; 212: 108767, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38797009

RESUMEN

Salt stress is a critical limiting factor for fruit yield and quality of apples. Brassinosteroids (BRs) play an important role in response to abiotic stresses. In the present study, application of 2,4- Epicastasterone on seedlings of Malus 'M9T337' and Malus domestica 'Gala3' alleviated the physiological effects, such as growth inhibition and leaf yellowing, induced by salt stress. Further analysis revealed that treatment with NaCl induced expression of genes involved in BR biosynthesis in 'M9T337' and 'Gala3'. Among which, the expression of BR biosynthetic gene MdBR6OX2 showed a three-fold upregulation upon salt treatment, suggesting its potential role in response to salt stress in apple. MdBR6OX2, belonging to the CYP450 family, contains a signal peptide region and a P450 domain. Expression patterns analysis showed that the expression of MdBR6OX2 can be significantly induced by different abiotic stresses. Overexpressing MdBR6OX2 enhanced the tolerance of apple callis to salt stress, and the contents of endogenous BR-related compounds, such as Typhastero (TY), Castasterone (CS) and Brassinolide (BL) were significantly increased in transgenic calli compared with that of wild-type. Extopic expression of MdBR6OX2 enhanced tolerance to salt stress in Arabidopsis. Genes associated with salt stress were significantly up-regulated, and the contents of BR-related compounds were significantly elevated under salt stress. Our data revealed that BR-biosynthetic gene MdBR6OX2 positively regulates salt stress tolerance in both apple calli and Arabidopsis.

2.
bioRxiv ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38766260

RESUMEN

Adhesion between epithelial cells enables the remarkable mechanical behavior of epithelial tissues during morphogenesis. However, it remains unclear how cell-cell adhesion influences mechanics in static as well as in dynamically flowing epithelial tissues. Here, we systematically modulate E-cadherin-mediated adhesion in the Drosophila embryo and study the effects on the mechanical behavior of the germband epithelium before and during dramatic tissue remodeling and flow associated with body axis elongation. Before axis elongation, we find that increasing E-cadherin levels produces tissue comprising more elongated cells and predicted to be more fluid-like, providing reduced resistance to tissue flow. During axis elongation, we find that the dominant effect of E-cadherin is tuning the speed at which cells proceed through rearrangement events, revealing potential roles for E-cadherin in generating friction between cells. Before and during axis elongation, E-cadherin levels influence patterns of actomyosin-dependent forces, supporting the notion that E-cadherin tunes tissue mechanics in part through effects on actomyosin. Taken together, these findings reveal dual-and sometimes opposing-roles for E-cadherin-mediated adhesion in controlling tissue structure and dynamics in vivo that result in unexpected relationships between adhesion and flow.

3.
Insect Mol Biol ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767730

RESUMEN

Bee venom serves as an essential defensive weapon for bees and also finds application as a medicinal drug. MicroRNAs (miRNAs) serve as critical regulators and have been demonstrated to perform a variety of biological functions. However, the presence of miRNAs in bee venom needs to be confirmed. Therefore, we conducted small RNA sequencing and identified 158 known miRNAs, 15 conserved miRNAs and 4 novel miRNAs. It is noteworthy that ame-miR-1-3p, the most abundant among them, accounted for over a quarter of all miRNA reads. To validate the function of ame-miR-1-3p, we screened 28 candidate target genes using transcriptome sequencing and three target gene prediction software (miRanda, PITA and TargetScan) for ame-miR-1-3p. Subsequently, we employed real-time quantitative reverse transcription PCR (qRT-PCR), Western blot and other technologies to confirm that ame-miR-1-3p inhibits the relative expression of antizyme inhibitor 1 (AZIN1) by targeting the 3' untranslated region (UTR) of AZIN1. This, in turn, caused ODC antizyme 1 (OAZ1) to bind to ornithine decarboxylase 1 (ODC1) and mark ODC1 for proteolytic destruction. The reduction in functional ODC1 ultimately resulted in a decrease in polyamine biosynthesis. Furthermore, we determined that ame-miR-1-3p accelerates cell death through the AZIN1/OAZ1-ODC1-polyamines pathway. Our studies demonstrate that ame-miR-1-3p diminishes cell viability and it may collaborate with sPLA2 to enhance the defence capabilities of honeybees (Apis mellifera L.). Collectively, these data further elucidate the defence mechanism of bee venom and expand the potential applications of bee venom in medical treatment.

4.
Hum Pathol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38782102

RESUMEN

There is no universally accepted method for evaluating lymph node metastasis (LNM) in non-small cell lung cancer (NSCLC) after neoadjuvant chemoimmunotherapy. Different protocols recommend evaluating the percentage of residual viable tumor (RVT%) and metastatic tumor size (MTS). Our aim was to determine the prognostic significance of RVT% and MTS, and identify the more effective parameter for pathological evaluating LNM. Two independent cohorts were collected (derivation, n=84; external validation, n=42). All patients exhibited metastatic cancer or treatment response in lymph nodes post-surgery. In the derivation cohort, we assessed the mean and largest values of MTS and RVT% in LNM, estimating their optimal cutoffs for event-free survival (EFS) using maximally selected rank statistics. Validation was subsequently conducted in the external validation cohort. The quality of prognostic factors was evaluated using the Area Under Curve (AUC). A positive association was identified between RVT% and MTS, but an absolute association could not be conclusively established. In the derivation cohort, neither the largest MTS (cutoff=6mm, p=0.28), largest RVT% (cutoff=75%, p=0.23), nor mean RVT% (cutoff=55%, p=0.06) were associated with EFS. However, mean MTS (cutoff=4.5mm) in lymph nodes was statistically associated with EFS (p=0.018), validated by the external cohort (p=0.017). The prognostic value of MTS exceeded that of ypN staging in both cohorts, as evidenced by higher AUC values. The mean value of MTS can effectively serve as a parameter for the pathological evaluation of lymph nodes, with a threshold of 4.5mm, closely linked to EFS. Its prognostic value outperforms that of ypN staging.

6.
Transl Lung Cancer Res ; 13(4): 849-860, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38736498

RESUMEN

Background: Resectable non-small cell lung cancer (NSCLC) patients have a high risk of recurrence. Multiple randomized controlled trials (RCTs) have shown that neoadjuvant chemo-immunotherapy brings new hope for these patients. The study aims to evaluate the safety, surgery-related outcomes and oncological outcomes for neoadjuvant chemo-immunotherapy in real-world setting with a large sample size and long-term follow-up. Methods: Patients with clinical stage IB-IIIB NSCLC who received neoadjuvant chemo-immunotherapy at two Chinese institutions were included in this retrospective cohort study. Surgical and oncological outcomes of the enrolled NSCLC patients were collected and analyzed. Results: There were 158 patients identified, of which 124 (78.5%) were at stage IIIA-IIIB and the remaining 34 (21.5%) were at stage IB-IIB. Forty-one patients (25.9%) received two cycles of neoadjuvant treatment, 80 (50.6%) had three cycles, and 37 (23.4%) had four cycles. Twenty-four patients (15.2%) experienced grade 3 or worse immune-related adverse events. The median interval time between the last neoadjuvant therapy and surgery was 37 [interquartile range (IQR), 31-43] days. Fifty-eight out of 96 (60.4%) central NSCLC patients who were expected to undergo complex surgery had the scope or the difficulty of operation reduced. Ninety-five (60.1%) patients achieved major pathologic response (MPR), including 62 (39.2%) patients with pathologic complete response (pCR). Multivariate regression analysis showed that no clinical factor other than programmed death-ligand 1 (PD-L1) expression was predictive of the pathological response. The median follow-up time from diagnosis was 27.1 months. MPR and pCR were significantly associated with improved progression-free survival (PFS) and overall survival (OS). Neither stage nor PD-L1 expression was significantly associated with long-term survival. Conclusions: The neoadjuvant chemo-immunotherapy is a feasible strategy for NSCLC with a favorable rate of pCR/MPR, modified resection and 2-year survival. No clinical factor other than PD-L1 expression was predictive of the pathological response. pCR/MPR may be effective surrogate endpoint for survival in NSCLC patients who received neoadjuvant chemo-immunotherapy.

7.
Ultrasonics ; 141: 107334, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38733864

RESUMEN

Grain size is one of the key microstructural factors affecting the mechanical properties of polycrystalline metal materials. In this study, a novel method for grain size evaluation using ultrasonic coda waves is proposed. Different from conventional bulk wave methods that require a point-by-point scanning of the structure, the proposed method allows for a rapid evaluation of the average grain size of the whole part from a single inspection location using one-pass testing data. A piecewise energy attenuation function dealing with different attenuation mechanisms is proposed to obtain the effective attenuation coefficient of coda waves. A power-law model is constructed to correlate the effective attenuation coefficient with the average grain size. Ultrasonic testing on nickel-based superalloy plate specimens with different average grain sizes is performed for model calibration and method verification. The applicability and robustness of the proposed method are further validated using a realistic turbine disk specimen with an irregular shape and non-uniform grain sizes. Results show that the proposed method yields a reliable and accurate estimation of the average grain size with a maximum relative error less than 20 %.

8.
Vaccines (Basel) ; 12(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38793715

RESUMEN

The rapid mutation of SARS-CoV-2 has led to multiple rounds of large-scale breakthrough infection and reinfection worldwide. However, the dynamic changes of humoral and cellular immunity responses to several subvariants after infection remain unclear. In our study, a 6-month longitudinal immune response evaluation was conducted on 118 sera and 50 PBMC samples from 49 healthy individuals who experienced BA.5/BF.7/XBB breakthrough infection or BA.5/BF.7-XBB reinfection. By studying antibody response, memory B cell, and IFN-γ secreting CD4+/CD8+ T cell response to several SARS-CoV-2 variants, we observed that each component of immune response exhibited distinct kinetics. Either BA.5/BF.7/XBB breakthrough infection or BA.5/BF.7-XBB reinfection induces relatively high level of binding and neutralizing antibody titers against Omicron subvariants at an early time point, which rapidly decreases over time. Most of the individuals at 6 months post-breakthrough infection completely lost their neutralizing activities against BQ.1.1, CH.1.1, BA.2.86, JN.1 and XBB subvariants. Individuals with BA.5/BF.7-XBB reinfection exhibit immune imprinting shifting and recall pre-existing BA.5/BF.7 neutralization antibodies. In the BA.5 breakthrough infection group, the frequency of BA.5 and XBB.1.16-RBD specific memory B cells, resting memory B cells, and intermediate memory B cells gradually increased over time. On the other hand, the frequency of IFN-γ secreting CD4+/CD8+ T cells induced by WT/BA.5/XBB.1.16 spike trimer remains stable over time. Overall, our research indicates that individuals with breakthrough infection have rapidly declining antibody levels but have a relatively stable cellular immunity that can provide some degree of protection from future exposure to new antigens.

9.
J Hazard Mater ; 472: 134460, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38718505

RESUMEN

Parabens can particularly raise significant concerns regarding the disruption of microbial ecology due to their antimicrobial properties. However, the responses of biofilm bacteria to diverse parabens with different alkyl-chain length remains unclear. Here, theoretical calculations and bioinformatic analysis were performed to decipher the influence of parabens varying alkyl-chain lengths on the biofilm bacteria. Our results showed that the disturbances in bacterial community did not linearly response to the alkyl-chain length of parabens, and propylparaben (PrP), with median chain length, had more severe impact on bacterial community. Despite the fact that paraben lethality linearly increased with chain length, the PrP had a higher chemical reactions potential than parabens with shorter or longer alkyl-chain. The chemical reactions potential was critical in the nonlinear responses of bacterial community to alkyl-chain length of parabens. PrP could impose selective pressure to disturb the bacterial community, because it had a more profound contribution to deterministic assembly process. Furthermore, N-acyl-homoserine lactones was also significantly promoted under PrP exposure, confirming that PrP could affect the bacterial community by influencing the quorum-sensing system. Overall, our study reveals the nonlinear responses of bacterial communities to the alkyl-chain lengths of parabens and provides insightful perspectives for the better regulation of parabens. ENVIRONMENTAL IMPLICATION: Parabens are recognized as emerging organic pollutants, which specially raise great concerns due to their antimicrobial properties disturbing microbial ecology. However, few study have addressed the relationship between bacterial community responses and the molecular structural features of parabens with different alkyl-chain length. This investigation revealed nonlinear responses of the bacterial community to the alkyl-chain length of parabens through DFT calculation and bioinformatic analysis and identified the critical roles of chemical reactions potential in nonlinear responses of bacterial community. Our results benefit the precise evaluation of ecological hazards posed by parabens and provide useful insights for better regulation of parabens.


Asunto(s)
Biopelículas , Parabenos , Parabenos/química , Parabenos/toxicidad , Biopelículas/efectos de los fármacos , Bacterias/efectos de los fármacos , Teoría Funcional de la Densidad , Percepción de Quorum/efectos de los fármacos
11.
Plant Cell Environ ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770581

RESUMEN

Mitogen-activated protein kinase (MAPK) signalling cascades are functionally important signalling modules in eukaryotes. Transcriptome reprogramming of immune-related genes is a key process in plant immunity. Emerging evidence shows that plant MAPK cascade is associated with processing (P)-body components and contributes to transcriptome reprogramming of immune-related genes. However, it remains largely unknown how this process is regulated. Here, we show that OsMPK12, which is induced by Magnaporthe oryzae infection, positively regulates rice blast resistance. Further analysis revealed that OsMPK12 directly interacts with enhancer of mRNA decapping protein 4 (OsEDC4), a P-body-located protein, and recruits OsEDC4 to where OsMPK12 is enriched. Importantly, OsEDC4 directly interacts with two decapping complex members OsDCP1 and OsDCP2, indicating that OsEDC4 is a subunit of the mRNA decapping complex. Additionally, we found that OsEDC4 positively regulates rice blast resistance by regulating expression of immune-related genes and maintaining proper mRNA levels of some negatively-regulated genes. And OsMPK12 and OsEDC4 are also involved in rice growth and development regulation. Taken together, our data demonstrate that OsMPK12 positively regulates rice blast resistance via OsEDC4-mediated mRNA decay of immune-related genes, providing new insight into not only the new role of the MAPK signalling cascade, but also posttranscriptional regulation of immune-related genes.

12.
J Control Release ; 370: 302-309, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663752

RESUMEN

Displaying antibodies on carrier surfaces facilitates precise targeting and delivery of drugs to diseased cells. Here, we report the synthesis of antibody-lipid conjugates (ALCs) through site-selective acetylation of Lys 248 in human Immunoglobulin G (IgG) and the development of antibody-functionalized red blood cells (immunoRBC) for targeted drug delivery. ImmunoRBC with the HER2-selective antibody trastuzumab displayed on the surface (called Tras-RBC) was constructed following a three-step procedure. First, a peptide-guided, proximity-induced reaction transferred an azidoacetyl group to the ε-amino group of Lys 248 in the Fc domain. Second, the azide-modified IgG was subsequently conjugated with dibenzocyclooctyne (DBCO)-functionalized lipids via strain-promoted azide-alkyne cycloaddition (SPAAC) to result in ALCs. Third, the lipid portion of ALCs was then inserted into the cell membranes, and IgGs were displayed on red blood cells (RBCs) to construct immunoRBCs. We then loaded Tras-RBC with a photosensitizer (PS), Zinc phthalocyanine (ZnPc), to selectively target HER2-overexpressing cells, release ZnPc into cancer cells following photolysis, and induce photodynamic cytotoxicity in the cancer cells. This work showcases assembling immunoRBCs following site-selective lipid conjugation on therapeutic antibodies and the targeted introduction of PS into cancer cells. This method could apply to the surface functionalization of other membrane-bound vesicles or lipid nanoparticles for antibody-directed drug delivery.

13.
Nat Commun ; 15(1): 3650, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688925

RESUMEN

Utilization of digital technologies for cataract screening in primary care is a potential solution for addressing the dilemma between the growing aging population and unequally distributed resources. Here, we propose a digital technology-driven hierarchical screening (DH screening) pattern implemented in China to promote the equity and accessibility of healthcare. It consists of home-based mobile artificial intelligence (AI) screening, community-based AI diagnosis, and referral to hospitals. We utilize decision-analytic Markov models to evaluate the cost-effectiveness and cost-utility of different cataract screening strategies (no screening, telescreening, AI screening and DH screening). A simulated cohort of 100,000 individuals from age 50 is built through a total of 30 1-year Markov cycles. The primary outcomes are incremental cost-effectiveness ratio and incremental cost-utility ratio. The results show that DH screening dominates no screening, telescreening and AI screening in urban and rural China. Annual DH screening emerges as the most economically effective strategy with 341 (338 to 344) and 1326 (1312 to 1340) years of blindness avoided compared with telescreening, and 37 (35 to 39) and 140 (131 to 148) years compared with AI screening in urban and rural settings, respectively. The findings remain robust across all sensitivity analyses conducted. Here, we report that DH screening is cost-effective in urban and rural China, and the annual screening proves to be the most cost-effective option, providing an economic rationale for policymakers promoting public eye health in low- and middle-income countries.


Asunto(s)
Catarata , Análisis Costo-Beneficio , Tamizaje Masivo , Humanos , China/epidemiología , Catarata/economía , Catarata/diagnóstico , Catarata/epidemiología , Persona de Mediana Edad , Tamizaje Masivo/economía , Tamizaje Masivo/métodos , Masculino , Tecnología Digital/economía , Femenino , Cadenas de Markov , Anciano , Inteligencia Artificial , Telemedicina/economía , Telemedicina/métodos
14.
Molecules ; 29(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675671

RESUMEN

Atmospheric water harvesting (AWH) is considered a promising strategy for sustainable freshwater production in landlocked and arid regions. Hygroscopic salt-based composite sorbents have attracted widespread attention for their water harvesting performance, but suffer from aggregation and leakage issues due to the salting-out effect. In this study, we synthesized a PML hydrogel composite by incorporating zwitterionic hydrogel (PDMAPS) and MIL-101(Cr) as a host for LiCl. The PML hydrogel was characterized using various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The swelling properties and water vapor adsorption-desorption properties of the PML hydrogel were also assessed. The results demonstrate that the MIL-101(Cr) was uniformly embedded into PDMAP hydrogel, and the PML hydrogel exhibits a swelling ratio of 2.29 due to the salting-in behavior. The PML hydrogel exhibited exceptional water vapor sorption capacity of 0.614 g/g at 298 K, RH = 40% and 1.827 g/g at 298 K, RH = 90%. It reached 80% of its saturated adsorption capacity within 117 and 149 min at 298 K, RH = 30% and 90%, respectively. Additionally, the PML hydrogel showed excellent reversibility in terms of water vapor adsorption after ten consecutive cycles of adsorption-desorption. The remarkable adsorption capacity, favorable adsorption-desorption rate, and regeneration stability make the PML hydrogel a potential candidate for AWH. This polymer-MOF synergistic strategy for immobilization of LiCl in this work offers new insights into designing advanced materials for AWH.

15.
Psychiatry Res Neuroimaging ; 341: 111822, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38678667

RESUMEN

Intelligent predictive models for autistic symptoms based on neuroimaging datasets were beneficial for the precise intervention of patients with ASD. The goals of this study were twofold: investigating predictive models for autistic symptoms and discovering the brain connectivity patterns for ASD-related behaviors. To achieve these goals, we obtained a cohort of patients with ASD from the ABIDE project. The autistic symptoms were measured using the Autism Diagnostic Observation Schedule (ADOS). The anatomical MRI datasets were preprocessed using the Freesurfer package, resulting in regional morphological features. For each individual, the interregional morphological network was constructed using a novel feature distance-based method. The predictive models for autistic symptoms were built using the support vector regression (SVR) algorithm with feature selection method. The predicted autistic symptoms (i.e., ADOS social score, ADOS behavior) were significantly correlated to the original measures. The most predictive features for ADOS social scores were located in the bilateral fusiform. The most predictive features for ADOS behavior scores were located in the temporal pole and the lingual gyrus. In summary, the autistic symptoms could be predicted using the interregional morphological connectivity and machine learning. The interregional morphological connectivity could be a potential biomarker for autistic symptoms.

16.
Radiat Res ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679421

RESUMEN

We conducted this study to investigate the radioprotective effects of recombinant human thrombopoietin (rhTPO) on beagle dogs irradiated with 3.0 Gy 60Co gamma rays. Fifteen healthy adult beagles were randomly assigned to a control group with alleviating care, and 5 and 10 µg/kg rhTPO treatment group. All animals received total-body irradiation using 60Co γ-ray source at a dose of 3.0 Gy (dose rate was 69.1 cGy/min). The treatment group received intramuscular injection of rhTPO 5 and 10 µg/kg at 2 h postirradiation, and the control group was administrated the same volume of normal saline. The survival rate, clinical signs, peripheral hemogram, serum biochemistry, and histopathological examination of animals in each group were assessed. Single administration of 10 µg/kg rhTPO at 2 h postirradiation promoted the recovery of multilineage hematopoiesis and improved the survival rate of beagles irradiated with 3 Gy 60Co γ rays. The administration of 10 µg/kg rhTPO alleviated fever and bleeding, reduced the requirement for supportive care, and may have mitigated multiple organ damage.

17.
Adv Healthc Mater ; : e2400956, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635863

RESUMEN

Photoactivable chemotherapy (PACT) using metallic complexes provides spatiotemporal selectivity over drug activation for targeted anticancer therapy. However, the poor absorption in near-infrared (NIR) light region of most metallic complexes renders tissue penetration challenging. Herein, an NIR light triggered dinuclear photoactivable Ru(II) complex (Ru2) is presented and the antitumor mechanism is comprehensively investigated. The introduction of a donor-acceptor-donor (D-A-D) linker greatly enhances the intramolecular charge transition, resulting in a high molar extinction coefficient in the NIR region with an extended triplet excited state lifetime. Most importantly, when activated by 700 nm NIR light, Ru2 exhibits unique slow photodissociation kinetics that facilitates synergistic photosensitization and photocatalytic activity to destroy diverse intracellular biomolecules. In vitro and in vivo experiments show that when activated by 700 nm NIR light, Ru2 exhibits nanomolar photocytotoxicity toward 4T1 cancer cells via the induction of calcium overload and endoplasmic reticulum (ER) stress. These findings provide a robust foundation for the development of NIR-activated Ru(II) PACT complexes for phototherapeutic application.

18.
Plant Physiol Biochem ; 210: 108572, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677189

RESUMEN

The Tetratricopeptide repeat (TPR)-like superfamily with TPR conserved domains is widely involved in the growth and abiotic stress in many plants. In this report, the gene MdTPR16 belongs to the TPR family in apple (Malus domestica). Promoter analysis reveal that MdTPR16 incorporated various stress response elements, including the drought stress response elements. And different abiotic stress treatments, drought especially, significantly induce the response of MdTPR16. Overexpression of MdTPR16 result in better drought tolerance in apple and Arabidopsis by up-regulating the expression levels of drought stress-related genes, achieving a higher chlorophyll content level, more material accumulation, and overall better growth compared to WT in the drought. Under drought stress, the overexpressed MdTPR16 also mitigate the oxidative damage in cells by reducing the electrolyte leakage, malondialdehyde content, and the H2O2 and O2- accumulation in apples and Arabidopsis. In conclusion, MdTPR16 act as a beneficial regulator of drought stress response by regulating the expression of related genes and the cumulation of reactive oxygen species (ROS).


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Malus , Proteínas de Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequías , Arabidopsis/genética , Arabidopsis/metabolismo , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética , Repeticiones de Tetratricopéptidos/genética , Especies Reactivas de Oxígeno/metabolismo
19.
Nanoscale ; 16(18): 8900-8906, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38563321

RESUMEN

Two-dimensional (2D) materials have shown unique chemical and physical properties; however, their synthesis is highly dependent on the layered structure of building blocks. Herein, we developed monolayer Dy2O3-phosphomolybdic acid (PMA) nanosheets and nanotubes based on microwave synthesis. Microwave-assisted synthesis with high-energy input gives a faster and dynamically driven growth of nanomaterials, resulting in high-purity nanostructures with a narrow size distribution. The reaction times of the nanosheets and nanotubes under microwave synthesis are significantly reduced compared with oven-synthesis. Dy2O3-PMA nanosheets and nanotubes exhibit enhanced activity and stability in photoconductance, with higher sensitivities (0.308 µA cm-2 for nanosheets and 0.271 µA cm-2 for nanotubes) compared to the individual PMA (0.12 µA cm-2) and Dy2O3 (0.025 µA cm-2) building blocks. This work demonstrates the promising application potential of microwave-synthesized 2D heterostructures in superconductors and photoelectronic devices.

20.
J Am Chem Soc ; 146(18): 12819-12827, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38669128

RESUMEN

Chirality evolution from molecule levels to the nanoscale in an achiral system is a fundamental issue that remains undiscovered. Here, we report the assembly of polyoxometalate (POM) clusters into chiral subnanostructures in achiral systems by programmable single-molecule interactions. Driven by the competing binding of Ca2+ and surface ligands, POM assemblies would twist into helical nanobelts, nanorings, and nanotubes with tunable helicity. Chiral molecules can be used to differentiate the formation energies of chiral isomers and immobilize the homochiral isomer, where strong circular dichroism (CD) signals are obtained in both solutions and films. Chiral helical nanobelts can be used as circularly polarized light (CPL) photodetectors due to their distinct chiroptic responsivity for right and left CPL. By the fine-tuning of interactions at single-molecule levels, the morphology and CD spectra of helical assemblies can be precisely controlled, providing an atomic precision model for investigation of the structure-chirality relationship and chirality manipulation at the nanoscale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA